Elementary maths for GMT

Algorithm analysis Part I

Algorithms

- An algorithm is a step-by-step procedure for solving a problem in a finite amount of time
- Most algorithms transform input objects into output objects

Running time

- The running time of an algorithm typically grows with the input size
- Average case time is often difficult to determine mathematically
- To define the running time, we focus on the worst case scenario
- Easier to determine
- Crucial and relevant to applications such as games, finance, robotics etc.

Experimental studies

- Write a program implementing your algorithm
- Run the program with inputs of varying size and composition
- Use function like clock () to get an accurate measure of the actual running time
- Plot the results

Limitations of experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiments
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, denoted n
- Takes into account all possible inputs
- Allows us to evaluate the cost of an algorithm independently from the hardware/software environment

Pseudo-code

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design / implementation / syntax issues

Pseudo-code example

- How to compute the max value in an array of integers

```
Algorithm arrayMax (A,n)
    Input array A of n}\mathrm{ integers
    Output maximum element of A
    currentMax \leftarrowA [0]
    for i}\leftarrow1\mathrm{ to }\boldsymbol{n}-1\mathrm{ do
    if A[]] currentMax then
        currentMax \leftarrowA[i]
    return currentMax
```


Pseudo-code details

- Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration
- Algorithm method (arg [, arg ...]) Input ... Output ...
- Method call
- var.method (arg [, arg...])
- Return value
- return expression
- Expressions
$-\leqslant$ assignment (like $=$ in Java/C\#/C++)
- = Equality testing (like == in Java/C\#/C++)
- Superscripts (e.g. n²) and other mathematical formatting allowed

Random Access Machine (RAM)

- A CPU that "executes" the pseudo-code
- A potential unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time

Important functions

- Eight functions often appear in algorithm analysis
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N -Log- $\mathrm{N} \approx \mathrm{n} \log \mathrm{n}$
- Quadratic $\approx n^{2}$
- Cubic $\approx \mathrm{n}^{3}$
- Exponential $\approx 2^{n}$
- Factorial $\approx n$!

Important functions

- Eight functions often appear in algorithm analysis
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N -Log- $\mathrm{N} \approx \mathrm{n} \log \mathrm{n}$
- Quadratic $\approx n^{2}$
- Cubic $\approx \mathrm{n}^{3}$
- Exponential $\approx 2^{n}$
- Factorial $\approx n$!

Important functions

- Eight functions often appear in algorithm analysis
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N -Log- $\mathrm{N} \approx \mathrm{n} \log \mathrm{n}$
- Quadratic $\approx n^{2}$
- Cubic $\approx \mathrm{n}^{3}$
- Exponential $\approx 2^{n}$
- Factorial $\approx n$!

Important functions

Necessary math

- Summations
- Logarithms and exponentials
- Properties of logarithms
${ }^{b} \log (x y)={ }^{b} \log x+{ }^{b} \log y$
${ }^{b} \log (x / y)={ }^{b} \log x-{ }^{b} \log y$
${ }^{b} \log x^{a}=a^{b} \log x$
${ }^{b} \log a={ }^{x} \log a /{ }^{x} \log b$
- Properties of exponentials

$$
\begin{aligned}
& a^{(b+c)}=a^{b} a^{c} \\
& a^{b c}=\left(a^{b}\right)^{c} \\
& a^{b} / a^{c}=a^{(b-c)} \\
& b=a^{a} \log b \\
& b^{c}=a^{c^{a} \log b}
\end{aligned}
$$

Primitive operations

- Basic computations performed by an algorithm
- Identifiable in pseudo-code
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model
- Examples
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting primitive operations

- By inspecting the pseudo-code, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A,n)
currentMax }\leftarrowA[0
for i}\leftarrow1\mathrm{ to }\boldsymbol{n}-1\mathrm{ do
        if A[i]> currentMax then
        currentMax \leftarrowA[i]
{ increment counter i }
return currentMax
```

```
        # operations
```

 # operations
 2
 2
 2n
 2n
 2(n-1)
 2(n-1)
 2(n-1)
 2(n-1)
    ```
            2(n-1)
```

 2(n-1)
 1
 1
 Total: 8n-3
    ```
                            Total: 8n-3
```


Estimating running time

- The algorithm arrayMax executes $8 n-3$ primitive operations in the worst case
- If we define
- a as the time for the fastest primitive operation
- bas the time for the slowest primitive operation
- $T(n)$ as the worst-case time of arrayMax
- Then, $a(8 n-3) \leq T(n) \leq b(8 n-3)$
- Hence, the running time $\boldsymbol{T}(\boldsymbol{n})$ is bounded by two linear functions

Growth rate of running time

- Changing the hardware / software environment
- affects $T(n)$ by a constant factor, but
- does not alter the growth rate of $\boldsymbol{T}(\mathbf{n})$
- The linear growth rate of the running time $\boldsymbol{T}(\boldsymbol{n})$ is an intrinsic property of the algorithm arrayMax

Constant factors

- The growth rate is not affected by
- constant factors
- lower-order terms
- Examples
$-10 n+10$ is a linear function
- what if we replace +10 by $+10^{2}$?
$-10 n^{2}+10$ is a quadratic function
- what if we replace +10 by $+10^{2}$?
- what if we replace +10 by $+10 n$?

The Big-Oh

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there is a positive constant c and an integer constant $n_{0} \geq 1$ such that

$$
f(n) \leq c g(n) \text { for all } n \geq n_{0}
$$

- Example: $2 n+10$ is $O(n)$

$$
\begin{aligned}
& -2 n+10 \leq c n \\
& -(c-2) n \geq 10 \\
& -n \geq 10 /(c-2) \\
& -\quad \text { Pick } c=3 \text { and } n_{0}=10 \\
& \quad\left(\text { or } c=12 \text { and } n_{0}=1, \ldots\right)
\end{aligned}
$$

The Big-Oh

- Example: the function n^{2} is not $O(n)$
$-n^{2} \leq c n$
$-n \leq c$
- The above inequality cannot be satisfied since c must be a constant

More Big-Oh examples

- $7 n-2$ is $O(n)$
- We need $c>0$ and $n_{0} \geq 1$ such that $7 n-2 \leq c \cdot n$ for $n \geq n_{0}$
- This is true for $c=7$ and $n_{0}=1$
- $3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
- We need $c>0$ and $n_{0} \geq 1$ such that $3 n^{3}+20 n^{2}+5 \leq c \cdot n^{3}$ for $n \geq n_{0}$
- This is true for $c=4$ and $n_{0}=21$
- $3 \log n+5$ is $O(\log n)$
- We need $c>0$ and $n_{0} \geq 1$ such that $3 \log n+5 \leq c \cdot \log n$ for $n \geq n_{0}$
- This is true for $c=8$ and $n_{0}=10$

Big-Oh and growth rate

- The Big-Oh notation gives an upper bound on the growth rate of a function
- The statement " $f(n)$ is $O(g(n))$ " means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$
- We can use the Big-Oh notation to rank functions according to their growth rate

	$\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(n)$ grows more	YES	NO
$f(n)$ grows more	NO	YES
same growth	YES	YES

Big-Oh rules

- If $f(n)$ is a polynomial of degree d, then $f(n)$ is $O\left(n^{d}\right)$, so:
- Drop the lower-order terms
- Drop the constant factors
- Use the smallest possible class of functions
- We say that " $2 n$ is $O(n)$ " instead of " $2 n$ is $O\left(n^{2}\right)$ "
- Use the simplest expression of the class
- We say that " $3 n+5$ is $O(n)$ " instead of " $3 n+5$ is $O(3 n)$ "

Asymptotic algorithm analysis

- The asymptotic analysis of an algorithm determines the running time in Big-Oh notation
- To perform the asymptotic analysis
- We find the worst case number of primitive operations executed as a function of the input size
- We express this function with Big-Oh notation
- Example
- We determine that algorithm arrayMax executes at most $8 n-3$ primitive operations
- We say that algorithm arrayMax runs in $O(n)$ time
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitives operations

Computing prefix averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The i-th prefix average of an array \boldsymbol{X} is the average of the first ($i+1$) elements of \boldsymbol{X} :

$$
A[i]=\frac{X[0]+X[1]+\cdots+X[i]}{i+1}
$$

- Computing the array \boldsymbol{A} of prefix averages of another array \boldsymbol{X} has applications to financial analysis

Prefix averages - Quadratic example

- The following algorithm computes prefix averages in quadratic time by applying the definition

```
Algorithm prefixAveragesQuad(X, n)
    Input array }\boldsymbol{X}\mathrm{ of }\boldsymbol{n}\mathrm{ integers
    Output array A of prefix averages of X # operations (after drop)
    A}\leftarrow\mathrm{ new array of }\boldsymbol{n}\mathrm{ integers
    for }i\leftarrow0\mathrm{ to }n-1\mathrm{ do
        s}\leftarrowX[0
        for }j\leftarrow1\mathrm{ to i do
        s}\leftarrows+X[j
        A[i]}\leftarrows/(i+1
    return A
        n
        n
        n
1+2+\ldots+(n-1)
1+2+\ldots+(n-1)
    1
```


Prefix averages - Quadratic example

- Arithmetic progression
- The running time of prefixAveragesQuad is

$$
O(1+2+\cdots+n)
$$

- The sum of the first n integers is

$$
n(n+1) / 2
$$

- There is a simple visual proof of this fact
- Thus, the algorithm prefixAveragesQuad
 runs in $O\left(n^{2}\right)$ time
- recall that lower-order terms can be disregarded (n / 2)

Prefix averages - Linear example

- The following algorithm computes prefix averages in a linear time by keeping a running sum

```
Algorithm prefixAveragesLinear \((\boldsymbol{X}, \boldsymbol{n})\)
    Input array \(\boldsymbol{X}\) of \(\boldsymbol{n}\) integers
    Output array \(\boldsymbol{A}\) of prefix averages of \(\boldsymbol{X}\) \# operations (after drop)
    \(\boldsymbol{A} \leftarrow\) new array of \(\boldsymbol{n}\) integers \(\boldsymbol{n}\)
    \(s \leftarrow 0\)
    for \(\boldsymbol{i} \leftarrow 0\) to \(\boldsymbol{n}-1 \mathbf{d o}\)
        n
        \(s \leftarrow s+X[i] \quad n\)
        \(A[i] \leftarrow s /(i+1) \quad n\)
    return \(A\)
    1
```

- Algorithm prefixAveragesLinear runs in $O(n)$ time

Relatives of Big-Oh

- Big-Omega
- $f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that

$$
f(n) \geq c \cdot g(n) \text { for } n \geq n_{0}
$$

- Big-Theta
- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}>0$ and an integer constant $n_{0} \geq 1$ such that

$$
c^{\prime} \cdot g(n) \leq f(n) \leq c^{\prime \prime} \cdot g(n) \text { for } n \geq n_{0}
$$

Intuition for asymptotic notation

- Big-Oh
- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$
- Big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$
- Big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
- In Big-Omega and Big-Theta notation we also omit constants and lower-order terms

Examples of relatives of Big-Oh

- $5 n^{2}$ is $\boldsymbol{\Omega}\left(n^{2}\right)$
$-f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_{0}$
- True for $c=5$ and $n_{0}=1$
- $5 n^{2}$ is $\boldsymbol{\Omega}(n)$
- $f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_{0}$
- True for $c=1$ and $n_{0}=1$
- $5 n^{2}$ is $\Theta\left(n^{2}\right)$
- $f(n)$ is $\Theta(g(n))$ if it is $\Omega\left(n^{2}\right)$ and $O\left(n^{2}\right)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \leq c \cdot g(n)$ for $n \geq n_{0}$
- True for $c=5$ and $n_{0}=1$

